Discovering Integer -Qualifier Space (zQ) via Z-Cum Space (C,)

(plus an alternative Z*Q and QZ* based on Z* :=“2-D Whole Numbers”)

by
Joy-to-yoU

AboutE.D. Brief #7: This article is meant to extend t#We-Cum (Cw) andwQ co-discoveries made in Briefs
#5 and#6 to co-discoveries GZ-Cum (Cz) andzQ. By answering, “I€; + (gl)'l = Cy?", itis possible

to construct two versions &-Cum space, one for whictl, + 9y = Jo (theF.E.D.”" formulation) based
on the Integers#), and a version which assumes at+ d,., is notqo, but rather is a “non-amalgamative
sum” not equal t@p or to anygd,+ This laterZ*-Cum space is based on perhaps a new quantitativarsyste
called the 2-D Whole Numbers’(Wz'D), developed in an appendiBoth formulations share the common
Cum-x: C, xC, = Cy.n (for anyWholek, n), which is the basis for expanding ¥-Cum space to the
Z-Cum space.The meta-genealogical product riteemployed in both versions. In an appendixppi®
offered regarding possible meaningsdaf‘q , for k, n in {1, £0, +1}.

Note to Reader on Prerequisite Brief®ur co-discovery herein crucially depends ugwnreader being
familiar with E.D. Brief #5 & E.D. Brief #6. We urge readers to read those briefs beforgngalkis one.

1. Overview and Question : “Is a ‘nullifying cumulation ' possible? ”

In E.D. Brief #5, “DiscoveringNaturalQualifiers Space Q) via N-Cum (C,) Space”, an
isomorphic mapexQ(n) := (C;)" = C,, is used to map tiaturals ontd-Cum (Cy), a
“Cumulation space” of idea set-numbers.EID. Brief #6, this map was extended, @ato theorigin
cumulation,Co := exQ(0) := (C1)°, which is the same as theigin qualifier: qo := Co -
identically theadditive identity elementand themultiplicative identity elementin both thg,Q space
and theW-Cum (C,y) space.

In this brief, in our process of co-discoveringsiens of “IntegelCumulation” space with the reader, we
first ask these new “early questiond5 it possible to nullify or reverse an ideal?e., “Is it possible to

have an idea seX, which can bring an existing idea-cumulati@l, back to a previous one, s@y—1?"
Mathematically, we are asking if there can exisKasuch thaCn, x X = Cp_1? This leads to the

questions“Can we have an inverse cumulati6f,) *, of Cn, so that(Cn) * % Cp, := Co?” andif
s0,“What is the nature of the possible resulting sggzic

Before getting into the possible mathematics, ldissuss this very notion of a ‘nullifying’ cumuila.

In our everyday parlance, we might hear such uttersas‘He wants to take us back to a time when...”
or “Her ideas about...argeactionary” . Indeed, there seems to be the possibility thaam ideas could
“reverse progress”, so to speak. But this doesmaatn we can actually go back in time, as is pdiotg

in F.E.D. Vignette #2: Time Actual. We merely proceed in epochal timénot necessarilyniform
calendar/clock timpwith the possibility that in epodi1, we could, nonetheless, have

(Cr4y) = CexX = Ci—?

So, it is reasonable to pursue such a “possik@hktgnsion” of our cumulation space, WNeCum space,
and of itsgualifiers.



2. Co-Discovering a“Z-Cum Spacé

We begin where we left off iBrief #6, with theWholeCums, C,y. First, we consider solvinG,.1 =
C, x X for someX = Cy. Assuming that our extendedbehaves as i€, we haveC,.; = Cp X
Cx = Ch+x, Which impliesthah=1 = n +X,orx ==1. ThusX = CjandC.1 XC; = Cpso =
Co, orC. 1 is theCum x inverse ofC;! And we suspect th&tC ;)" might give birth to an alternative

W-Cum (Cy), just ag(C;)" generatecC,,. With our “preliminary theorizing” done, we nowstulate
that such aiX = Cy exists:

Initial Nullifier Existence Postulate There exists aullifier cumulation (Cs1) ™ := Ci+:= C.1, with C.
1% Cs1 = Cao. [impliesZ-Cum exists as{ (C.1)*: zinZ} := C, = {(Cu1)" zinZ}]

Next, we make an isomorphic copy@§, to create a “complementaGum space,” say¥*-Cum or
Cw :={C,+: W* in someW* set complementary M }. If Cy,. in Cy,. were to be aCum x inverse”
of Cw in C\y under the same type 6um x extended t&,y, [0 Cy+, thenCy X Cyy+ := Cyaw+ = Co,
so we might claim thav +w* = 0, or thatw®* = —w. This would say that our complemen{Vf;
W* := {-w: winW}. Thus, our expanded/extendédm spaceappearsto be:

C, = CwlCw =6 =Cyw0Cw = Chorw = C2

Y4

In other words, th€um space that would contain tRim X inverses oCyy is:
C, = IntegerCum space= Z-Cum space!

BecauseC.; is the isomorphic image @1, C.1 generate€, := (C.1)* in a similar way to the way
C.1 generate€, := (C+1)”. And, asLC.; is defined to be the multiplicative inverse®f;, we have --

C, == [Cal = [(Ca) '] = (Cu)™.

We now see that for integer exponents (i.e.,enpr—z in Z), eitherC., or C.; alone, unde€um x,
can generate all @-Cum space! Expressed RE.D. terms: C.1" is the «arché/“base” that
generateZ-Cum, and so is€C.;” -- an “alternate” arché»/“base”, that also generat&sCum.

3. Deriving Integer -Qualifier Space, >Q
The corresponding Integ€ualifier space;Q, can be defined as the set of differentials oZallums,
or as the union of thgualifier spaces that correspond to WeCum andW*-Cum spaces:
2Q = {qg,:=09C;: forallintegerz (zinZ)}, or
20 = WQ 0O wQ ={gw := 9Cy: forallw inW} O{g.w := dC.: forallw in W}.

But now we must inquire: “Is each succeedipg; (or precedindl.;-1) qualitatively more (or less)
definite than the previow?” To answer this, we have two sepaggf2 andy-Q element orderings

g+0 —+ Q1 —F Quz ..o —FHQuk —F ...
g+xo —+d1 —+ Qo... —*+ gdk —+ ...



Thus, the symmetry gfQ implied by the isomorphism @fQ andy.Q, means there is no longer a total
ordering (unless the “definiteness is reverseqy.®), sowe donot have

-t Ok —t ... =+ 02 —+ 01—t 0 —+ 01 —F Qw2 ... —F ek —+ ..

Defining Cum Addition, Cum +

Is that it? Does that define our spac€ams and their inverse its gualifiers space? In a word,
“No”". As yet, we have not defing@um +, the addition oCums, in this expanded space@ims, not

to mention theiCum X inverses Cum + must be defined in order to defingé™in qualifiers space).

But in W-Cum, this addition is defined alk + Cn = Cmaxixn} . Correspondingly, ilW*-Cum, this
addition would be defined under the correspondsagniorphic image rulesC.x +C.n = Cmingk-n} -

But how shouldCum + be defined for a “mixe€um”, C.x + C,,, i.e., with subscripts opposite in sign?

Originally (in E.D. Brief #5), Cum + was defined as the union sé€x + C,, := Cx O Cp. But, in
our previous casé < n meant thaCx 00 C,, i.e., the set-numbéZx was entirely contained within set-
numberC,. Nevertheless, we shall define the “mixed sum’@ +C,, := C« O C,. And, as
before, we can invoke a notion of “subtraction'dfsated by a tilde~) via a notion of “set difference”,

Cm~Ck=Ch = Cm=0Cht+Ci
Lettingm = 0 andk = n, we have a statement relativeGg, the “null-Cum™:
If we do haveC.o = C, +C.p, thenCsyo ~ Cn = Ch.

And sinceCyg is “like +0 additively”,C.o ~C.n = ~C., = C,, i.e., we might be led to think that
“the opposite £) of C., is like C,,”, or conversely, that “the opposite Gf, is like C.,,".

Figure 1 attempts to illustrate two options of how “negat@ums” may exist. Generally, se§, & C.
k appear disjoint except for having gy element in common (sindeg.o [0 C,, for allz in Z). So,
subtracting one set from the other, £y~ C., or “netting out” theC_x elements irCp, (only C.o

elements), yields all of th€,, set-numbers excefd:o, S0C, ~Cx = C, ~Cio = Cp, with the ="
sign indicating“perhaps having’ the same quality as™Here, our “reasoning via set-analogy” says

(when—k =n) that selC_, is like (=) Cp, and we are led to s€&,, as mucHike C,;: C., = C,,. But, is
this “alleged likeness” ak is to 1l (“exact equality”), or is it “likeness” ak-1| isto|+1] (opposite, but
“equal in some qualitative sense”)? In later ssj we shall explore our options more precisely.

Figure 1: lllustration of Possible Nature &-Cum (Cz) Space

Qe

NI




Key Question “Is ‘Cy1 + (C41)* = Cuo’, or not?

Again, we do not know what the precise relationshiwithout an assumption, a postulate perhapsofAs

yet,we do not know iCs1 + (C+1)™ = Cuo or not. If so, then by applying our linear qualo-operafhr,
to both sides of our qualitative equality, we woh#e that --

0Cin+C,h) = 0Cin+09C, = 0Csp = Qwn+dn = o (by definition,gx = 9Cy).
So(if Csn +C., = Cyo, then) +g., = —(4+n) = —Q+n, would bethe additive inverse of ..
(As inBrief #5, 0 defines Z-qualifier addition”: d(C,1 + C,2) = 0C,1 “+"09C,1 = Q1 +072.)

We can use these results to interpret the suittabfl Figuresl(a) or 1(b) to represent an illustrative
model ofC., andC.,,. In Figurel(a), we have equal but opposite “qualitative areaptesentingC.n
(positive area) an@., (negative area), yet their differentialscpralifiers,q., andg+n (opposite areas)
are pointing in the same direction (when we mighbfqr them to be opposite sintg., = —d-n). In
Figurel(b), we have equal positive “qualitative areas” repngisg eithelC., or C.,,, but their
qualifiers (also equal positive areas) are pointimthe opposite direction (which we prefer). Thus,
neither figure is the “perfect model” for what midte illustrated graphically, so we'll let the read
choose which s/he prefers (if either) as a guidaéo understanding.

To summarize so farMotivated by our desire for@um space that contaidum X inverses, we have
constructed aZ-Cum base space” under an exten@aan % and an extendedum + (Cum -addition).

The corresponding Integ€ualifier spacezQ, is then defined as the set of “differentialshe €ums”,

{ak := 9C; for allz of Z}, or as the union of thgualifier spaceszQ =wQ 0O w-Q. The addition
of gualifiers, 9,1 + 4,2’ is defined byd acting on the defineGum sum, C,; +C,,'.

The resultingrersions andll have the sam@um x andCum + operations in common, i.e., thelgare
the same originating “Base spdce= < {C,}, Cum %, Cum +, 8( ), [(); id(x) = Cso = id(+) >,
while their correspondingualifier spaces will share the sanpaalifier “x" multiplication.

4. Versionl: Ciq + (Qﬂ)'l = C.o, and defining‘Z-Cum’ space and,Q’s “x”

Version| postulate C+; + (Qﬂ)'l = Cy

In Versionl(a), the current.E.D. version 0£Q, we defineC.+; + (C+1)™ asCuo, using theIntegers”
(Z) as our guantitative base set, along with thiguate:

Additive Identity / Amalgamative Sum PostulalteZ-Cum, C.1 + (Q_l)'1 = Ci1+Cq = Cy, e,
aqualitative equality existbetween the sung+; + C.1, and itsCum X identity element(.o, so that we
haveC.o = C41 + C.; as amlamalgamativesum

Therefore, the differential of this sud(C.+; + C.1) = 9C+1 +9C.1 = g+1+0d-1 = g0 = 9Caso,
says thag+; + g.1 is an “amalgamative sum” equal (reducible)dao, the identity element of integer
opengualifier spaceQQ,, all possible finite sums g elements. This, in turn, says th@f., = —J+,
for allzin Z. Sincetq.; is thex inverse oftq., and since-q.; is the+ inverse of+q.,, this equality
meanghe additiveinverse elemenis also themultiplicative inverse elemenfior any element], of ,Q'!

Versionl “ cumulation formulas

But under its define€um + addition,Z-Cum is no longer closed under that addition! Inst¢hdse
non-Z-Cum sums are simply non-amalgamative sumgulifiers! We shall now understand that this
4



Cum + closure setg Z-Cum, Cum +>, is Open integeQualifier space under its+” addition: OQ,
= <,0Q, “+" >. Thus, the immediate result of this closure is (fo> k of Z):

In general, fok < n in +W, we have --

Cin+Cx = [(8Cut)+tin0.n ofw + [(8C.u) -uinfz0 K of—w
= 2(Q+t) +tinzo,n] + 2(A-u) -uin 20, -k
= (Q:o+Qwa+ ezt ... +Q:n) + (A0 + Q1 .. +0k)
= (g0 + Qz0) + (4.1 + Q1) +...#+ (Qok + D+k) + (Quks1 +...+ Q+n); rearranging in pairs:
= (d:0) + (0:0) *...t (O:0) + (Qeker +.o+ D),

Q+k+1 + Qeke2 +...+ Qen-1 + Qun, by definition of g0 = id(+).

Then, fork = n, we have the symmetric ‘zero-suni’=" a sum of ‘zero pairs’, as postulated --
Cin+Ch = (d1+0+1) +(d2+0d+2) +...+(Qn +d+n) = (d:0) +(0z0) +...+(dz0) = (:o0.
Similarly, for=k <-n in -W, we have

Cn+Cx=0dn+den1+qen)2 +...+ Qei+1 + Ak = k) + Aeky+1 +ooo+ Aeny2 + An)-1 + Aone

Defining “x”, the gualifier multiplication operation in the,.Q “qgualifier base spack

The only remaining task for defining our “base ®jaaf Z-Cums, and,.Q Z-gualifiers space, is to
define the multiplication operatiorx®on the,.Q space. Recall ig.D.Brief #5 onNaturalgualifiers
spacenQ, we listed four possible alternatives for axioralkefinition of its multiplication operation as:

1) g “x"gn = On+k , commutativer[E.D. name: “meta-heterosis convolute produdi”
2) Ok “X" dn = dk + An+k , hon-commutativer E.D. name: “meta-catalysis evolute produdt’
3) dk “X"gn = Qn+k + Qn, NON-commutatived.E.D. name: “ double«aufhebens evolute product;

4) gk “X" dn := Ok + dn+k + 9n, cOmmutative §.E.D. name: “meta-genealogical evolute produdt’

Definition 3 was selected for tiNaturalgualifiers, yQ, then for thdWholegualifiers,,Q, and then
implicitly also for they.Q, as:

INWQ: dwi “X" dwz = dwi+wz +dwe, fordwi andgw. both inyQ;
INw-Q: A1 “X" Awz = A-wiewz) T Az, fOr d.ws @andg.wz both ing.Q;

However, we still need to defin&™when one factor is i,Q and the other factor is {g.Q. To do this,
we must keep in mind olnew requirements’for any suctgualifier multiplication, ", namely:

a) Under X", (0+1)* must generate theth Cumulum: (g+1)* = Q41 +...+ 04z, if 2>0, or
(9.1)% = g1 +...+ Q4 if2<0.

b) “x” should be commutative, reflecting the “pure synmyef theZ-Cum and,Q spaces”.

c) UnderCum %,C.,;x C, = Cio, S0 X" may mirror this pattern opQ: d+; “X" d.; = Q0.
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Only Definition4 above fits these requirements, so it is selectdtiea“new, axiomatic, commutative
multiplication operation definition” for al}Q elements:

dz1 X0z = dz1+01+2 +dz2 (the meta-genealogical evolute produgie).
We note that “Requiremen)” is also satisfied:

dn X0+n = Qon +Aenyren) ¥ Aen = Aon +Qen + Aonen = (Aon +9n) ¥ q20 = (0:0) + 90 = (o

It is also a bit comforting that this new™reduces to ol for \Q, e.g., when “squaring” @ualifier:

(gn)2 = 0OnX0dn = On+Gnn +0n = On +0n+0nen = (An+0n) +d2n = dn +don.

F.E.D. postulates that thg) product obeysthe meta-genealogical evolute product-rulésr good
reason. The two factors interacting to producpraduct” can be regarded as two “parents” intengctd
[re-]Jproduce a “child”, or, perhaps more appromiatto [re]produce orform, a “Family” =
“Parentzl + Child_(z1+z2) + Parentz2”

“Parentz1” interacting with “Parentz2” [re-]produces” Parentzl + Child_{z1+z2) + Parentz2”
921 X dz2 = dz1 +  Qz+z2 +  d»

Thus, when stated in terms of “parents”, “childid “family”, we can more readily understand the
phrase: tetagenealogicakvolufe]-tion”, as meaningbdeyondparents to family’, and thus we can
better appreciate the namtneta-genealogical evolet product” To me, thisnterpretationwithin the
F.E.D. model helps gives ilife” and“history” in a very essential and human way!

We now havé qualo-fractions’ and“ qualo-differences !

Qualo-Fractions With the existence ok inverses in,Q, qualitative fractionsor “qualo-fractions”,
a,1/9,2, emerge, as the product of a “qualo-numerat@s; ) with anx inverseas “qualo-denominator”
(dz2)tin 0Q,, IntegerOpenQualifier Space:

d-1/dz2 = Q1 X (9_22)-l =01 X%Xdez2) = dz1tdz-22+tdez2) = dz1 Y dz1-22 — Q(+22)-

Qualo-Differences Via the+ inverses ir}Q, gualitative differenceor “qualo-differences’; d,1 — 42, arise:
sums of “qualo-minuends”d1 ) with + inversesas “qualo-subtrahendst2 ), in OQ,:

dz1 =022 = Oz +(—Uz2) = dz +dcz2).

Note that g,1/d,2 —1— d.,1— dz2": Although in,Q we have thaf +g+z)'1 = +((z = -0z this
does not imply thatq,1/qz2’ is qualitatively equal tod,1 — qz2’. Why? As the equalities above

show, they are notd,1/d,> = Qz1 +dz122 — U2 —1— d,1 — dz. But why not? Because we
cannot generally interchange-# bperation with anX’ operation in,Q !

Note on “circular flow of signs! It is worth noticing that the use of exponenipgrscript) and
subscript notation results incacular flow of signg — or +) around th&y symbol as center, that

yields equivalences (for am, in ,Q): (-Q+7)" = (+d—)"™" = (+d+) -

Canwe solveAX = B’ or'A+X = B in*0Q,." space?

In high school algebra, one repeatedly solves dfasine equations of the for@x = 1 or5 +x =10, or
generally:ax = b, anda+Xx = b. In opergualifier spaceQQ,, we might attempt a general solution to
6



AX = B, whereA = 2 0t overfay @andB = 2.+t overp) are sums iQ,. If <OQ,, x> is a group, we
can appyA™ = [T a+ over{a}]_l = 2.0t over{a} to both sides of the equation, then re-associste (
group allows) to obtain(A™ xA)xX = A™xB = (qg)xX = X = A'xB = BxA™ =
B/A, and we would thus establish thgualitative fractions; or ‘qualo-fractions; are the solutions i©Q,.

Because-A will exist, A+ X = B maybe solvableds=FA+A)+X = -A+B = B-A,if
+associativity holds in this Versioh case, which would mean that sudliference sums’or such
‘qualo-differences’are the solutions i©Q, .

Do we wantg, +d, = g, or ‘associativity of+, in 0Q,?

However, as presently defined, Versicsometimes lacks associativity of addition becafshe “give-
away idea” requirement which says that+ g, = g, (or“d; —d, = d,’, i.e., give away ideg, and
you still have it) for angualifier g, in ,Q. Yet, we have thatg.; = —Q.z, So:

(9+z+0+z)+dz = (Q+z) ~Q+z = Qxo, but
Az +(Qez+07) = Qiz+(g0) = Quz forallzinZ.

Together, the result & contradiction -- unlessassociativity is allowed not to hold for some casedor
OQ,. Therefore, we must choose betwegaving+associativityin all cases, OR) permitting non-
associativity, but maintaining the “give-away ideatjuirementA + A = A). If we choose to keefd

+ A = A, we have Versiohas established, accepting a degree of non-asisdgian OQ,. If, on the
other hand, we requireassociativity, we must “give up ‘the give-away idea’ idea,” gsrésumably gain
that< OQ,, +> and< OQ,, x> are both commutative groups, having distributiaify over+.
Remarkably, that choice mightiggest that OQ,, +, X; id(+) = g« = id(%)> would be a “super-
field!”-- a hitherto undefined concept in abstract algébr

But alas, such enthusiasm is short-ligiace, in abandoning + A = A for all A in OQ,, we no
longer have the conditions that impliet{+) = gs = id(X), as proven in AppendifAl of Brief #6.
So, in adoptingrassociativity& abandoningd + A = A, we would lose)so = id(X) since:

d:X0x = dz:+0z+0+0:0 = d- t+ 42 '1‘ g!

Thus, we wouldn’t even have a multiplicative idgngélement, let alone ‘super-field”! So, motivation

is missing to abandoA + A = A, less being gained than lost thereby. (Oh, but éxciting to
imagine d'super-field” possibility!).

In*C" (i)™ ==i: In our Versionl spaces, we ha\(e(_lz)'1 =-C, forallC, of C5, and( +g_+z)'l =-g,, for
all g, of zQ. By way of contrast, the space of @emplex numbers{C" ) is the only well-known [qualo-
]quantitative space which has elements such(tkdt' = —x (true only forx = + andx = —i)! Only+i and

=i in all of € have theimultiplicative inverseshesame agheiradditive inverses

We conclude this section with“eeal world” application of our Versionl ontological spaces. Létm
:= { ontology behind/of athatter particle}. Then(+Q+m)”’ = +Q.m = —Q+m = { ontology
“behind”/of an ‘anti -matter particle}. With matter and anti-matter “particles” modesed“ontological
inverses”, we describe their behavior in “mattetifamatter interactions” as “mutually-annihilatory”:

OmX0dm = gz and 9+m +dm = d+m —d+m = Qzo0.
Such behavior has, of course, been confirmed byittEss experiments in “particle” physics. F.E.D.’s
model result matches those observational results.
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The above definitions and relationships completensodel of the Versiohspaces:Z-Cum and,Q:
<C,:={C,}, Cum x, Cum +, 3( ); Cso =id(x,#); ‘Ciz + (Co1) " = Cu0’s ,Q :={q,}, %, + [(); Guo =id(x,4) >
In essence, Versidrs ,Q (or OQ,) is a space that includes “negative ideas”, whichonly can nullify

(to +0) a “natural idea” undex, but which can also “negate” it completely (@) under+! Thus,d.n
ideas have an inescapable “minus-ness” about them!

5. Version Il: Z*-Cum and ,.Q spaces-C; + C; —1— Co

Versionll postulate C, + Cp+ —1— Co

In Versionll, we define an alternal®*-Cum and,.Q space, based upon a postulajaelitative

inequalityof Co andC; + (Ql)'l, using the 2-D Whole Numbers’as our guantitative base set (defined
in AppendixAQ), together with the following postulate:

Non-Amalgamative Sum Postutate Z*-cum, C; + (C1)™* = C; + Cy —1— Co, i.e., aqualitative

inequalityexists between the sui@; + (Ql)'l, andCo and any other cumulatid@x in C,, (implying
thatg; + di+ is a“ non-amalgamative sum)”

Let (C1)™ := Civ, where+1*is in Z*. This postulate says that the s@a,+ C;+, cannot be reduced
to any other element gfQ. Thus, neither can the suy + Cy+. So, the differential of any such sum,
0(Ch +Cx) = 9C, +9C+ = dn + g+ is considered to be anfbn-amalgamative sumin our
corresponding opequalifier space{ﬁz*.

These non-amalgamative sums still do not guaraaddgive @) associativityin Versionll’s open
qualifier space@z* space, because wher inversedoesexist (shown below), those sums do
amalgamate. Thus, we cannot ensure that the sys@€, ., +; o = id(+) > is a commutative group

(see AppendiXA3) — indeed, it appears that it is not such a grddpch is also true for Versidis
system< QQ,, +; o =id(+) >, because its amalgamative sums (due itoverses) fail to provide

universaiassociativityin its opergualifier spaceQQ,, (see Appendil).

Figure 2 is an attempt to illustrate two examples of whajhhoccur inZ*-Cum space. Shown are
possible “equal, but not opposite” qualitative areéC, andC,..

Figure 2: lllustration of Possible Nature &*-Cum (C,.) Space




Versionll “ cumulation formulas

TheCum + & “+" definitions on,.Q elements §(Cn + Ck.) := 9C,, “+”" 0Ck. := dn + Ok« Where
0+ :=“+"] then allow us to write thbasic cumulation formulaf®r adding cumulationE,, andCy., and
for their mixed-sum cumulatiol, + Ck-.

In general, there is no need to comgdare n ork > n (since we are summing on different axes!):
Qn +gk* = .[(a_Ct)tin[O, n] ofw + .[(a_cu*) u*in [+0, k*] of w[]
= 2(40) tino, n] ofw + 2(Qu+) usin[+0, k] of wrl

= (0o +Q1 +Q02 +...+ 0n) + (k- +...+ Q1. + Qo-)

(ks +...+d1- +qo-) + (go + 41 + g2 +...+ 4n), by commutative rearranging
= O« +...+d1- + 01 + Qo +...+ 0y, sinced* =0, andgp = go- = id(+).
Then fork = n, we have the “symmetric sum” = “a sum of non-zeaas”

Ch+Ch = Qe +...+g1r+d1+do+...+dn

(1 +d1) + (g2« +Q92) +...+ (gn- + dn), by commutative rearrangir®y associating.

In Versionll, the same commutativeeta-genealogical evolute prodigtemployed orC,’s gualifier

set,».Q. Its correspondin@z* space may, in some cases, contain additive invefbe for some
sumsA (as exemplified immediately below), 0, does not necessarily have such “opposites”.

We conclude with éreal world” application of our Versionll ontological spaces. Let, := {the
ontology behind/of somenew particle”}. Then letg,. := {the ontology “behind”/of its X inverse
particle”}. Under Versionl, we actually claim that itsX‘inverse patrticle’i,.) cannot be its-opposite

particle, sincen + dn+ —1— Jo- So, represented via qualitatively different éotiges for the %

inverse” (dn+) and “* inverse” (dp) qualities, we might predict a new kind of behavinffiom an as
yet undiscoveredri-particle” (from an “identity relation” establishéd AppendixA0):

Jo = Qn XQn« := Odn+dn- + Anens, therefore: Qnene = =[An + dn-].
or, in terms oMI?®, the2-D Whole Number spac@see AppendiXA0), we have --

q(0,0) = a(n 0)xa(0,n) = g(n,0)+qg(0,n) +ga(n, n,

therefore:g(n, n) := —{g(n, 0) +q(0, n)].

Such am-particle might be thought of as having its lefpest,d(n, 0); its right-aspectg (0, n); and its
dual-aspect, or “full-aspect’d(n, n), which is the “opposite” (additive inverse) of thiem of its left-
and right- aspects, which axenverses of each otheg(n, n) := -[g(n, 0) +g(0, n) ].

AppendixA0 also defines a “dot product”s”; multiplication onA = (a,b) & B = (c, d) of w?P
as:A*B = (ac, bd) := ac +bd, and then shows th&t*B =0 « AOB = A = (a,0)in
9



W&B=(0,b)inWLORA=(0,a)inWL& B =(b, 0) in W. Plus, inZ* := <W O W.> space,
we can define a “dot product™”; on ,.Q gualifier elements as:

da*0s := 0aB = Gact(bd)+ = Jac X A(bd)+ = Gac X (Abd)* = Qac/Ubd-

Since these “VersioH results” originate from the orthogonal orientatafrtheW.L space, via a flip

across they = X line, this might suggest anparticle’s predicted behavior. This “flip” mayngply

model a phenomenon such as polarized light, oteatren’s ‘half-spin” or “whole spin” state, in wth
case, a “particle/state” matching this arithmetalgkbraic model has already been discovered.
Otherwise, the hypothesizedparticle behavior only points to a possible existe which must, of
course, be confirmed by empirical observationi$ ito be deemed to be also an actual existevieesion
II's model merely expresses the possibility of suah-particle’s existence with the behaviors indicated.

The above definitions and relationships completedetinition of Versionl spaces:Z*-Cum and,.Q:

<C,.:={C,.}, Cum x, Cum + a(); Co=id(x4); 'C1 + (€)™ ¥ Co’i 2.Q :={g,,,.} X + [(); G0 =id(x,4) >

In essence, Versiditi's ,.Q (or@z*) is a space permitting “orthogonal ideas” which aallify (to qo)

a “natural idea” undex, but does not usually “negate” it completely @) under+! Thus,q«) ideas
have an ineluctable “orthogonal-flip” about them!

6. Summary and Outlook

Figure 3 summarizes the functional relationships am&h€ , and,Q, via inverseg)( ) andg™(),
exQ() andloQ( ), andd( ) and]( ). It also depicts®@penQualifier Space” as containing bo@z and
ZQ spaces sinceggz space” is the space of all possible finite sumsl @oducts) which arise frogQ
qualifiers under addition and multiplication. [leefZ” refers to either th& space or th&* space.] We
again note that althoudBQ, is operationally “closed” undef and+ (i.e., contains all sums that its
finite sums can generate as products or suUB), is “open” in the sense of being “open to countless

possibl€interpretations’ of any sum or product in our modeling applicagbrHence our tern@Qpen
Z-Qualifier Spacés). The algebraic natures of both g@z space and th@z* space have been

delineated, in previous discussion herein, or eahpendices hereto. (Appené&8 summarizes these).

Figure 3: Relationships oZ, Qz’ 2Q with q( ), (), exQ( ), 10Q(), (), [( ).

"Cloen
Qualifer

space”




“Thought-full” Funful Note In E.D. Briefs#5, #6, and#7, we have come to entertain ourselves with the
playful notion that OQ,, space’ is quite “like a bunny rabbit’'s head”, @$artfully shown” inFigure 3. And

now we “see” that between the bunny’s ears argulifiers Q (at his right ear), and glums C, (at his left

ear), and many sums in between his ears. Coutbesde sums (‘some’ thoughts!) ‘in between’ repnésiee
bunny’s ‘open-mind’, thinking?! If so, then ourrdmy sure has taught us (‘thought’ us) a lot!

Our expanded systems of ontologigahlifier elementsgQ, (8 = Z or Z*), & binary operations, X on
sQ, generally possessssociativityin both+ andx, and generally havdistributivity of X over+, but
not in all cases In the cases wheessociativity anddistributivity do falil, the failure is due to thg, +

dn = dn’and'gen = —Qn' properties, creating a failure ¢hssociativity, which may or may not
produce failures irxassociativityand inx+distributivity .

This algebraic system does, however, have the umigtie property: id(+) = 0 = id(X)’, i.e., its
‘Zero’ of addition, and its ‘One” of multiplicatiqrare the same elementhis uniqueness was made
possible by theA + A = A’ property of each elemei in the system — and ironically, it is this very
‘A +A = A’ property which causes the failure aissociativity!

AppendicesAl andA2 prove/disproveassociativity (A1) anddistributivity (A2) on both versions of
IntegerOpenQualifier Space:ggz* and@z. AppendixA3 shows thaDpen IntegelQualifier space,

<o_Qz, X > possibly, ane& o_Qz, +> are not commutative groups under their definediplidation
(even though they have invers&ss non-associative because fion-associativity i@z). Appendix
A4 attempts to definexx” and” onZ-Cum (Qz) as analogously as possible to the multiplicaion
exponentiation operations @ making< Qz, X, XX, > ijsomorphic to< Z, +, X, >. Using these

results, speculatio& proof are offered owhat‘gy*q,’ mightmean fork, n in{-1, 0, 1}.

The existence aZ*-Cum (QZ*) and,.Q spaces, usind* = 2-D Whole Numbersnever permit any

“epoch indicesT’ < 0, when epochal time 82 0. Thus, in Versiorl, one cannomis-interpret the %
inverse ontology” as a “going back in time” (butgtni interpret it as an ‘orthogonal’ “flip in tim€”)

The existence of th&-Cum (gz) and,Q spaces, however, allow for the “epoch indexk 0, when

epochal time i€ 2 0. The “existence” of gualifier ontology,d—1, (=T < 0) is but another “ontology”
or “kind of being.” As such, it exists in the mirdso is possible, in that sendédoes not imply the
possibility of going backwards in tinfe for that would require positing a “time-reversntology” for
that purpose)!

This brief, in a way, represents a kind tihalé for now-ee.” Yet, there seems no end to the pdgigs
offered byF.E.D.’s dialectical models of ontological space

-- Joy-to-You(July 2012)

++ F.E.D. = Foundation Encyclopedia Dialectica, authors of A Dialectical “Theory of Everything” —

Meta-Genealogies of the Universe and of Its Sub-Universes: A Graphical Manifesto , Volume 0: Foundations .
www.dialectics.org and/or www.adventures-in-dialectics.org
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Appendix AOQ -- Possible versions oZ*-Cum and z.Q spaces C.; + C 4 —1— Co

Let us defineS :=Z* :=<W O W*, +>, all possible elements formed by unifyiWjwith its isomorpW* under
an extended addition operation. Then the basikleno that we attempting to solve is: “What is pussible Cum

x)-inverse operatiorf; := A which, acting twice o, space (and o8 :=<W [0 W* > by implication), leaves
every element in those spaces unchanged.” ThuanfocumC,, for z in §, we have

[(C)'" = [(C)] = [Cs]" = G =C, and [(Cs)']" = [Cs:]” = Cse = Cs,

with the latter equation on the corresponding otetite spaceéd implying that{$*]* = $** =8, foreveryzin §
= Z*. So, since the left equations &&Y* = z forallzin $ = Z*, these equations thimply:

(*)o(*) = (*)* = id(o), where ‘©” is the “composition of functions operation”.

C. Musés solved a very similar problem when herefféhis “counter-complex” space; he simply statedgroblem
in terms of 1" (=id(x), thex identity element irReal space, treatinfjas a “number”, sag (:=* ), in the

resulting space. Thus, Musés solvéé < é° = +1” more generally than thel and—1 in Real space. His solution
setwas{ &} = {+1, -1, +¢, =€} = K,, in which “+1” (the “multiplicative identity element” or “no acin
element”), =1" (as the flip acrosg = 0, y-axis), +€’ (the “flip” across they = x line), and ~¢€’ (the “flip” across
they = —x line). Simply stated{, under o’ is theKlein 4-group. This general solution then shows us how to
form possible configurations @&* space as outlined here (showrkigure A0-1):

1) é = +1, yieldsW space again, sin@&* = <WOW*> = <W> = W.
2) é = -1, yields the traditional integers, SinZ& = <WO-W> = <Z> = Z
3) é = +g, suggests a new space whereis orthogonal (perpendicular) @, thus
Z* = <WOWDO> =<{(n,n*) :=n+n* ninW,n*in W.} >,
4) & = -g, suggests another new space wiWteis orthogonal (perpendicular) W, thus

Z* =<WOEFEWD> =<{(n,n*) = n-n* ninW,-n*in W1} >.

Figure AO-1: lllustration of Possibl@* = <W O W* > Spaces

™ 2 7

0" ray " " artnt " ray

vy ren
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These four possible “types &* ", in turn, suggest four possible “types@t-Cum space”C,,, with four possible
orientations of cums i€,, := C<wnow-> These orientations, shown in pa@$ and(b) of Figure AO -2, of W*
andC,, suggest the following cases (per the sequencel listepossible &€ =" above):

1) Z* = <WIOW* +> = <W> = W = Quadrant(a) (normal whole) locus g€um Cy-.

2) Z* =<WOW)> +>=<Z> = Z = Quadrantl(a) (hormal integer) locus @um C..

3) Z¥ = <WOMWy),+> =<{(n,m):=n+m* ninW, (+m)*in W1} > = QI(b) locus ofCum C..
4) Z* = <WDO(-WL),+> = <{(n,m):=n-m*: ninW, (-m)* in W1} > = QIll(b) locus ofCum C..

We note that in Casdsand3 the extended addition @* is first defined as by a vector sufn, m*) :=n +m*,
and that in Casezand4 the extended addition B* is first defined as by a vector differenée, m*) :=n - m*.
Note that wheW™* = -W, the flip across thg-axis automatically implies that the sum# n* = n+(-n) = 0
appears only as the orig{®, 0) = 0. HoweverW* = (-W.), the flip across thg = x line, allows that the
sumn +n* =(n, n) appear not only as the origin, but as any numbpoints on either0 ray” shown inFigure
AO-1. This result allows for a “different kind &*-Cum space” than th&-Cum we first sketched. Case

Quadrant(b), also allows for therf + n*” ray to be defined; this case is selected to benewZ* space. Thus,
what we stated as our suspicion in the body ofdaltisle is confirmed in several ways.

. Eigure AQ -2(a) (Case2) implies C; +(C1)™ = Co& C.. = —-C4, or “opposite-inguality” Cums, and
II. Eigure A0 -2(b) (Cases3 & 4) impliesC; + (Cy1)™ —1— Co& C; +Cy« —1— Cy, or “similar-inguality” Cums.
Letting(Cy)™* := (C))" := Cy:

Versionl: C,; +C,;. = C.g, the sum ofC,; andC_; reduces to the “amalgamative su@\y.

Versionll: C; +C;. —1— Co, the sum ofC,; andC, is the “non-amalgamative surf; + C;..

Figure AQ-2: lllustration of Possible Nature(s) of t&Cum (C,) Space(s)C, +C,. = vs.—t— Co.

¥=x
flio Itne

" “

e = +i
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Figure AO0-3: lllustration of Assumptions behind olnteger Spaces , Z, & Z* := 2-D Whole Numbers .
b #
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Z :="[ntegers" Z*="2-D Whole Numbers"

For our Versiorl, we shall consider only CaSeabove Z* := W”® := <W 0 WL, + >, in which we assume that
the sutm +n* ;=0 in some sense, i.€n, n) is viewed as a “difference*(as ", perhaps) equivalent 1 (see
Figure A0-3 & Figure A0-4). This enables us to claim th@f's “Xinverse”,(d,)* = dn-, iS NOt its *inverse”,
or “opposite”,dn» —1— =0, O gp« —1— —0,. So, modeled as ontologies fafifiverse” @1,.) & “+inverse” q,)
qualities, we have a general identity, which to rae the form of a_“conservation 1&m physics:

Qo = OnXdn* = On + On* + Qi = (o, thereforeignns = —{dn +dn*].
Or, in terms ofV*®, the2-D Whole Number Spaceve have:

q(0,0) = g(n,0) xq(0, n) := g(n, 0) +q(0, n) +a(n, n), therefore:g(n, n) := —[a(n, 0) +g(0, n)].

So, our proposed space might have its additioraasb* := (a, b) = (a, 0) “+” (0, b), where each is thought of as
representing its left-aspe¢s, 0), its right-aspect(0, b), or its dual-aspect, or “full-aspecta, b). Ifb = a, then
(a,a*) = a+a* := 0, with the left-aspect and right aspect bexigverses of each other. @Q,., this would
imply the existence of an “opposite” (additive ins&) of the sum of its left and right aspee{sy,, + 4,-], thatis

dn+n+ (@s shown above) -- though ) gualifier space does not necessarily/generally é¢orsiach “opposites.”

Figure AO-4: Correspondence betweZi-Cum (gz,) and Z* := 2-D Whole Numbers .

i /7

A l “otnT=(non) ray "
| )
: WL /
; oe oo
Cu, (b) Im*?—c—o—@(l'ﬂ”lm*
I
: : o @ ¢ ¢
| [
' o000 W=
| /ﬂ n
N _
2 = "2D Whols Numbers”
Z'Cum = C,+ = Gy, yu Z'= <WuW=> = Wx W=+
= {Cn +m*} = { n+m* = (n.' m} }

We may also define a “dot product «” multiplicationA = (a, b) andB = (c, d) of W*® as:
A*B = (ac,bd) := ac +(bd)*,
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and then show that --
AB =0 AOB = A =(a0)inW,&B = (0,b) inW., ORA = (0,a)inWL&B = (b,0)in W.

Furthermore, ifZ* := <W 0O W.> space, meaning that(x),, = (1, 0) andid(x)y. = (0, 1). So we can define
a dot, *”, multiplication (an appropriate name @&t element “dots"?) op.Q gualifier elements, id(*)|z =
(1, 1), whereA = (a, b), andB = (c, d):

da*de = das = Gactd)* = Jac X Abd)* = Jac X (Aba)* = Gac/Apa-

The *y =x line” or the ‘(n, n) = n +n* dots” (ian'D) is a “line of ‘self-inverses™ (n, n)* = (n,n).
Only a defined vector addition has been necessaryur discussion, but for “completeness”, we defimother
closed multiplication oZ* as:

(a,b)x(c,d) = (ac +bd, ad + bc).

epsilon numbers”llniote them implied here, 48, b) = a +bg; (c,d) = c +dg].

1w

[Those familiar with Dr. Musés

OurZ* := WP is only a proposed space to offer as an altern&iZand the additive inverses implied j@.

Figure A0-5 is anF.E.D. depiction of the transition froMIhole Qualifier space (Q) to Versionl's Integer
Qualifier spacg,Q). Note the 180° opposite vectors” among all orthogonal elementgbf We now ask*Would

the(d,)* = g.. vectors appear a®0° non-opposite vectors” for a similar depiction afrgionll’s 2-D Whole
NumbersQualifier spacé,.Q)?”

Figure AQ-5: F.E.D. Depiction of the Transition from thgQ to the.O gualifiers space

Transition from Wg to Z,:Q — A ‘Meta-Number Spaces’ View

—
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Appendix Al — Associativity of (x, +) in Open Qualifier Spaces?
Please interpret the findings below with the foliogvnote in mind.

Note Before determiningssociativity status, we note that in ordinary arithmeti¢,2 + 3 x 4 - 3/ 6, taken as
(1/2) + (2 x 5) = (3/6) = 10, does not equal the former, taken, instead/@s+ 2) x (5 - 3)/6 = 1/12. This
"ambiguity" is resolved by theonventionthat multiplication and division operations arebgiven priority-of-
performance vis-a-vis addition and subtraction apens. In the case of the sometinmesr-associativity of ,Q

addition, this might be resolved by adopting a sehre similarconvention e.g., by giving,Q addition priority-
of-performance oveyQ subtraction, after converting al+ g., "additions" toz — g., subtractions.

+ is not associative irOQz --

The “amalgamative” sums @Q, provide cases wherassociativity fails:

(Q+z +9d+2) +0- (d+z) — d+z = Qs but
Gz +(Qiz+02) = Qiz +(0dw) = iz thus+is not always associative @Q,.

+is not associative i0Q  --

The “non-amalgamative” sums QQZ* guarantee that the sum is the same no mattertiewgriouped
(“associated”), except in cases wherdraverse exists i@r, as was shown fal,.« = [ g, +d+]. Insuch a
case, we would have an exampées (the one above, by replaciggwith [ gn.+n+]) of the form:
([ ] +[Qnene]) +=[Dnenc] = ([Qoens]) = [Doenr] = do, but
[ g.n+n*] + ( [ g.n+n*] + _[ g.n+n*] ) = [ g.n+n*] + ( qO) = [g.n+n*] , thus+ is not alwayassociativein %z*-

x is (or ‘is not) associative ir0Q, --

We show that any triple product appeassociative but that suckkassociativity might depend orassociativity
since every product is a sum.

(QaXQp) XGc = (Qat+Qasb +Ap) Xe = (Qa*Xdc) + (Qaro X dc) + (b X Ac)
= (da+Qasc +Ac) + (Qaso + Dasvsc +dc) + (b +Apsc +9c)
= (Qatdp+dc) +(Qasb+ arc +Abic) + (arbec)
= datdpt+tdc + Qdavtdarc Fdore T atbec
Ga X (A Xdc) = Qa X (o +pec +dc) = (DaXdp) + (daXAowc) +(da*de)
(da +dasb +db) + (Da+ Dasvee + oec) + (da+ Dave +dc)
(da+dp+dc) +(Qaww+darc +Aprc) + (Datbic)

Jatdp+tdc + dawbtJawc Fdose +  datbic

Thus,(dax Q) X dc appears equal tad, % (gp x gc) before any sums are “amalgamated”. Once they ar
amalgamated, depending upon the sum, the resuft®nmaay not be the same -- sineé not alwaysssociative

in0Q_ !

x is (or‘is not) associative irOQz* -

Thex in o_o_z* is the same as @z, so the triple product-sums are identical. TH@E, % dp) % . appears equal

to da % (Qgp x dc) before any sums are “amalgamated”. Once thegrmsgamated, depending upon the sum, the
results may or may not be the same -- siatenot alwaysssociativein mr either!

Are + or x associative itDQw? Answer +is, x is not

We now contrast the above findings with thosed@,,, OpenWhole-Numberualifier Space. First, we learn
that+associativity may bea bitin question here also, since:

(gn+9n)+9xk = gn+dx butg,+(g,+dx) = dn +dn + dk, due to §, +gx’ being non-amalgamative.
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But, doesn't this sum, by definition of sum as imlate attainable sum” beg that we apply whatevehrigjue will
further “reduce” it? This would mean that thetfisssociated sum on the I€f,, + d,) + dk, defines the sum of
three terms, which isg;, + d, + gx’:

On +0n + 0k 1= (dn+0n) +k = (Ao +0n) +Ax = On +
Since we claimed that, + (g, +dx) = dn + 4. +dx, We have by transitivity, that
(A +dn) +Ak = An+(dn+dk) = dn+(dn +dk)-
So, we shall clairassociativityin < OQy, +> — but we had to “argue our case” to claim it!

It is clear, however, that triple products,thg doublexaufheber evolute productule for “x” in OQy, are not
associative as these product-sums differ qualitatively, ébg.the tern... below: x is non-associative ik OQy, X >:

(g_axg_b)xg_c = (g_b+g_a+b)xg_c = (g_bxg_c)+(g_a+bxg_c) = (g_c+g_b+c)+(g_c +g_a+b+c) = Jc *+ Jp+c *+ Ja+b+c,
Ga X (Ob X0c) = da X (dc +db+c) = (da X dc) +(da X Qo+c) = (e + Jarc) + (Ab+c + Qasbre) = e + Jarc + Abvc + Jarbrc.

Appendix A2 — Distributivity ( of x over+) in Open Qualifier Spaces?

x does(or ‘does not) distribute over + i@z and@r -

We may have a similar problem widistributivity , but the following shows thaistributivity appears to hold
except when the sums are amalgamated.ALet X O overfa} B = 2 Qi overfry @NAC = 2 i over{q. Then --

[A+B]xC = [Xdyqy + 2y 1 X (X Qg ) = [Z0xa ] X (Z34g) + [Z Ay ] X (X ayg)
= (XA XA tinuingg) ¥ (Z kX Qu,kinfa,uin{g );
AC +BC = (XZdyy) *(XAyg) + (Zduyny )X (Xdyg)
= (20 X Autingahuin{g) + (29 X Aukingay, uin{g )-
In both@z and@z*, the sums are identical, yet once those (sub-)sumsh can be amalgamated, are

amalgamated, we have the same difficulty widlssociativity as before. Thus, we ha¥edistributivity only if the
sums associate equally, i.e, produce the sameusnd s

x does(or ‘does nat) distribute over noramalgamative sums imw -
Finally, we show thak distributes over the non-amalgamative surd mw +, x >, from both sides, although the
results are different (as we would expect since ‘tki is non-commutative):
(da+dp) xde = (daxdc)+(Aoxdc) = (e +arc) +(dec +Abee) =dc + Qa+c + db+c;
Qc*(@a +db) = (dec*da) +(de ¥ o) = (da+darc) + (Ao +bwc) =da+Up + davc + Abic.

Appendix A3 - Z or Z* Open Qualifier Spaces as Algebraic Systems

Despite the problems witkassociativity, we may summarize our findings for each versieystem or subsystem.

<0Q,, x>,<0Q,, x> are commutativéalmostGroups! —

These subsystems each have a commutative, geresabigiativex, & have all other Group properties:closure,
id(x), and aA™ for eachA. Each subsystem has mmon-associativity only when itstassociativity fails in its
product-sums, as already explained (both abovebaluv).

<00Q,, +>,<00Q,., +> are commutativéalmostGroups! —

These subsystems each have a commutative, butssociativet, but have all other Group propertiesclosure,
id(+), and a-A for eachA. In each, itsrassociativityfails due tog, + q, = g, andq., = —q..

For 8§ = Z or Z*, the systems OQg, +, X; id(+) =qo =id(X) > are“ far from” being‘superfields —

Our math system of ontologicalalifier elementsgQ, and binary operationg x ongQ, generally exhibits
associativityin both+ andx, and generally exhibitdistributivity of x over+, butnot in all cases In cases where
these properties do fail, the failure is due to'the+d, = g,’and '+g, = -g,,’ properties creating a failure of

+associativity, which may or may not produce failures alsxassociativity and inx+distributivity .
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Because the system is not alwagsociativein either+ or x, nor alwaydistributive for x over+, the entire system
falls quite short of being an algebraic Field, bbeing a Group in its subsystems.

This algebraic system does, however, have a mégti@property: id(+) = qo = id(x)’, i.e., its ‘Zero’ of
addition, and its ‘One” of multiplication, are tesame! This uniqgueness was made possible byAh®¢ A = A’
property of each elemeptin the system — and ironically, it is thi& + A = A’ property which causes failure of
+associativity, and hence okassociativity, and indistributivity of x over+!

<OQu + X%, id(+) =qo =id(x) > is a" distributive’ system witht+associativity!
Our discussions above f@w show thak @w, +, x > is a ‘distributive " system with+associativity, so that the
subsystenx OQy, +; id(+) = qo > is acommutative monoid (:= asemigroupwith id(+) ), as stated iBrief #6.

Appendix A4 — Speculation /*proof’ on‘gy*q,’ for k, nin {-1, 20, +1}
Defining “xx” and“~” on C, and ,Q —

In Appendix A3 of E.D. Brief #4, “xx” and “*” were defined ojQ elements so thaxk” and “*” were
analogous to the multiplication and exponentiatioN. Similarly, in this appendix, we attempt to defian %x”
on gz that is somewhat analogous to multiplicationdgo that gz, X, Xx > s isomorphic ta< Z, +, x >,

Since< C,, x> m times implieC., X Cin X ... XCyy = [Cin]™ := [(C:1)™]™. In order to make this result
analogous tex in W, we defineC.,, xx C.pp := [(Cs1)" 1™ =(Cs1)™ =Cinm = Cimn = Cim %% Cyp, Which
says: exQ(n) xx exQ(m) = exQ(n x m), and thaC,, xx Cy = Cq, = Cy = Cyo = Cp %xx C,, for any+w of
+W. Then for any-n, -m of -W, we shall regard the second fadly, as the “container of the number of times”
that< C., x > is to be performed, namelj“m | times”.

Thus, we defin€., xxC.n = [(Cr1)"1™ =(C)™™™ = Coxlanl = Cnxll = G XX . In eSSENCE,
then,< (W), x> = < (+W), x> means the in (-W) acts as:(-1) x (-1) = (-1), as(+1) x (+1) = (+1) acts in
W, and so does the correspond@igm x in C andC.w. Also,id(X)| ow = (-1) asid(x)| w) = (+1).

Similarly forn, m >0, C, XX C.p, == ( C+1)'”]|m| = (Q+l)-n|m| =Com _1_ Cimn =Cim x|-nl =Cuim %x C., and for
N, M >0, Cum X% Con = [ (Ce1)™1™ = (Ce1)™ = Conm = Comn = Cam X% Cun. Thus, we have defined a
multiplication,xx, which is analogous t® on (+W) x (+W) and on(-W) x (+W), butnot analogougo x on

(-W) x (-W) nor tox on (+W) x (-W), as detaled below by “subregion”. This is simiphcause the second factor
is used to register an “absolute count” of repeatattiplication of the first factor. S@.o xx C., := [(Cu: )io]"”|

= C,o, and,C., xx C, = [(g+l)'”]'°' = C.o. Underxx, C,, serves as “annihilator”, always reducing the
product to itself. Therefore, a complete defimitiaf xx: gz x gz |- gz definesxx on each

“quadrant”/“subregion”:
For (C.n, Cim) Of quadranC.y % C.w: Cin X% Cim = Cinm; analogous te on (+W) x (+W);
For(C.n, C.m) of quadranC.w X C.w: Cin xx C.m = Cinm; hot analogougox on (+W) x (-W);
For(C.n, C.m) of quadranC., X C.w: C.,xxC.,n = C.,m; analogous tex on (W) x (+W);
For(C.n, C.m) of quadrantC., X C.w: C,xxC. = C.nm notanalogousoxon (-W) x (-W);
For ( C.o, C.1n) Of region{ C.o} x gz: CioxxCy = Ci; analogoust@Oxon {0} xZ;

For(Cu, Cw) of region C_ x{Cs}: CuxxCsy := Ci; analogous t+0 on Zx{+0}.

The above results implynlike+1 and-1, thatC., is the right-identity foxx on C, andC; is the right-identity
forxxonC.y: Ci1 = id(XX| +w) andC; = id(xx | -w). This result probably follows fro8., = id(x) on all of
gz = Cwoew), SinceCyq = id(+) also,C,o is both likex0 and like+1; thus, we speculate th@t; in C . is
analogous t&,, in C,y.
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We extend the definition ofx to” by: Cy"Cm := [(Ci1)" ] Cm] = [(Ce1)"]™ = [(Ce)™™] = Comm,
which says:exQ(n)*exQ(m) = exQ(n*m),& C"C.o = Cimo = Ci1 = Cip"C, On in Z, exceptn = 0. For
n =0 = u, we note thatim_q.{ u*u } = +1, so we defin€.,"C.o = C; if C. is neared from abow0, &
C.io"C. = C. if Cy is neared from belowO: Lim,_o.{ C"Cy} = Ci1 & Lim,_o{CC,} = C...** Forthe
case oh =0 & m =-1, £07(-1) := “undefined”, ast0 has noxinverse inZ, or in any purely-quantitativeReal”
space. However, sin€&y is its ownxinverse for thex of gz (& g4 is its ownxinverse for thex of ZQ), we could

(with “equal reasonableness”) defiBe,"C ; as:
Cuo"Ci1 = [(Cu)™1™ = [(Cuo) 1" = (Cuo)™ = Cuo, & similarly: Cuo"Ci1 = (Cuo)™ = Cuo.

Thus,Figure_A3-1(a) shows therdinary exponentiatiort in Z, while Figure A3-1(b) showsthe special
exponentiation”™’ in our symmetri’: W O (-W).

Figure A3-1: “ Exponentiation Tables fdr-1, £0, +1 } in Z (left) and in ‘Symmetri@&’ " (right).

" -1 0 +1 A -1 0 +1
-1 -1 +1 -1 -1 -1 -1 -1
0 undefined | Limit: +1 0 +0 =20 Limits: 0

+1
+1 +1 +1 +1 +1 +1 +1 +1

Using results of the specidl’in ‘symmetricZ’, we filled in a “Possible Exponentiation Table {ad.1, 90, +1}",
shown agigure A3-2 below (assuming th&@um ~ applies taqualifier “*": C; := .1, Co := 10, C1 :=0.1, and
to the implied multiplication<x and exponentiatiom™” on ZQ elements). The interested reader may wish tonatte
the research needed in order to extend this tayjlertd the seftq.;, d.0, 4+1} as bas& exponent set.

Figure A3-2: “Possible Exponentiations Table for the valuesfset, q.0, Q+1}.”

no=n Q1:=Ca 0:0:=Cso A:=Cu
41:=C, 41:=C, 41:=C, 41:=C,
010 := Cao 010 := Cso 91:=Ca/"*du1:=Cn Jo:=Cyo
9:+1:=Cn 9:+1:=Cn A:=Cu 9+1:=Cus

Joy-to-You!



